

JDS International Seminar II Supervisor: **Prof. Maki Tsujimura**

Hydrological Understanding of Groundwater Resources in Dhaka City, Bangladesh

Content

- Introduction
- Objectives
- Methodology
- Findings
- Summary
- Future Works

Mohammad Tanvir Akkas

201326025 (M2) December 15, 2014

INTRODUCTION

 Groundwater (GW) is an almost ubiquitous source of generally high-quality fresh water. (Taylor et al., 2013)

GW in Highly Populated Area: Have lower per-capita groundwater resources
 < 1000 m3/(capita yr) (P. Doll et al., 2008)

Foundwater on Different Aspects

GW in Developing World:

- Preferred as a source of potable water:
 - ready availability and
 - →natural protection from contamination. (Hoque et al., 2007)
- Developing countries in the tropics
 Rapid Urbanization (A. Gupta et. Al., 1997)
- GW in Tropical Area:
 - In tropical landscapes where land-cover and land-use change have

been rapid and complex; (J. Krishnaswamy et al., 2013)

GW in Flood Plain Area:

- Groundwater resources are significantly influenced and extensively recharged by flood plain areas.
- Extensive floodplains along large rivers play an important role in the hydrological cycle and water resources.

December Reduction of inundation area reduce the GW recharge. (So Kazama et al., 2007)

• GW in Delta Area:

Shallow aquifers underlying Asian mega-deltas are characterized by strong seasonal variations associated with monsoon rainfall. (M. Shamsudduha et.al. 2009)

In Ganga Delta aquifers, Rainfall and Floodwater -> Groundwater

In Humid region:

Image: Wikipedia

Solved Issues

 ✓ Evolution of Groundwater chemistry with rapid urbanization.
 ✓ Groundwater and Surface water interaction

Unsolved Issues:

(Ratan K et al., 2011)

✓ Contribution of Climate Change towards Groundwater.

✓ Groundwater Recharge process in two different aquifer system of floodplain alluvium and Pleistocene clay zone.

During the 20th century, precipitation :

increased In high northern latitudes

➢ decreased → in some sub-tropical and lower mid-latitude regions.
December 15, 2014

Despite In Bangladesh, it has

- Sufficient rainfall (2400 mm)
- Tropical humid climate (10 ~ 35 °C)
- Alluvial flood plain
- Abundant surface water (800 River;

feb

ian

24,140 km) (BMD, 2013)

Suffering from GW issue for quantity and quality specially in the central region!

Dhaka is a vital central region of BD for its political and economical importance

In Dhaka it is projected that

- Water demand will double in next 15 years;
- Land subsidence from 2000 to 2020 would be

6.4 cm; (IWM, 2008)

December 15, 2014

4 000 00
So it is very much essential to
understand the hydrology of
Dhaka city to study the reasons of
its rapid GW drawdown;

mar apr may jun jul aug sep

oct nov

PREVIOUS STUDY IN BANGLADESH

- In Bangladesh decreasing tendency of annual rainfall was indicated in Madhupur Tract (central region of Bangladesh). (Kazi, 2001)
- Systematic groundwater development began in the city of Dhaka in 1949. (Ahmed et al. 1999)
- More than 79% population of Dhaka relies on groundwater. (Dhaka WASA, 2013)
- Due to the over extraction of groundwater, last 15 years the groundwater table declined
 @ 3.5 meter/year. (Sultana, 2009)
- ✓ Upper parts of the aquifer are already dewatered throughout the Dhaka city; Mohammad A. Hoque et al., 2007)
- Due the intensive pumping, vertical leakage of relatively poor quality water may occur. (Sultana, 2009)

Fig: Surface Geology of Dhaka

For better understanding the hydrology of Groundwater of Dhaka it is inevitable to know its recharge process!

December 15, 2014

Objectives

To Identify the recharge sources of groundwater in Dhaka;

STUDY AREA: Dhaka city

Densest Megacities of the world

density → 45,000

pop/sq-km. (Joel Kotkin, 2011)

Population: 14.6 million (World Bank, 2013) Area: 360 km²;

Water body: 48.56 km²

Avg Altitude from Sea Level: 4 m

Climate: Tropical Monsoon (Hoque et al. 2007)

Temperature: 12~34 °C

Annual Rainfall: 2150 mm

Dhaka city is situated in the Pleistocene uplifted block (Madhupur Tract) within the passive margin surrounded by subsiding floodplains. (Miah & Bazlee, 1968)

Source: Bangladesh Bureau of Statistics(2011),

December 15, 2014

Study Area

✓ Aquifer and aquitard layers do not have similar gradient as surface topography.
 ✓ Overlying and underlying aquitard / aquiclude units separate all three aquifer units.

✓ Abrupt change of hydrostratigraphic unit thickness in places without following usual gradient.

3500

METHODOLOG

Organization:

B Chemical Analysis

Field Survey:

10 December 15, 20

Daily Groundwater Production & No of DTW

2000

1800

1600 1400 1200

9000

P⁸⁰⁰₆₀₀

400

200 0

> Jul-98 Aug-99

453

Sep-00

B. EXPERIMENTAL DATA Field survey

August 2014 (Rainy Season)

400001 - 6.100000

Water Sample collection: GW: 39; SW: 14;

Lake Water HCO₃ **Electrical Conductivity** pН Legend pH Legend Legend River Lake GW River GW River Lake HCO3 (meq/L) 6.00 - 6.30 Cond (us/cm) 0.000000 - 0.800000 Elevation (m) 9.1 - 11 6.31 - 6.80 20.00 - 50.00 0.800001 - 2.200000 2 4 4 0 1 0 1 2 50.01 - 250.00 0.0 - 3.0 Kilometer Kilometers 6.81 - 7.10 11.1 - 1 2.200001 - 3.300000 250.01 - 400.00 3.1 - 5.0 13.1 - 1 7.11 - 7.60 3.300001 - 4.400000 400.01 - 600.00 December 15, 2014 5.1 - 7.0 15.1 - 1 **River and canal** 7.61 - 9.10

600.01 - 720.00

Fig: Sample Location

Groundwater

River water

7.1 - 9.1

17.1 - 2

Variation of Water Quality

Preliminary Result

For downstream region:

- Extensive groundwater abstraction may be the primary reason of rapid GW drawdown;
- Groundwater flow from the peripheral region towards central region leads the possibility of GW recharge from the river bed;
- Water quality varies significantly from the down stream region to central and upstream region;
- GW is mostly Ca-Mg-HCO₃ type;
- Water samples are dominated by HCO₃ with a very low concentration of Cl⁻.
 SO₄ and NO₃ are almost nil.

FUTURE WORKS

Performing the Isotope (d¹⁸O, dD) analysis of the water samples ;

REFERENCES

- 1. World Bank 2013; <u>http://data.worldbank.org</u>;
- 2. M. Shamsudduha et al., 2009: Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta; Hydrol. Earth Syst. Sci., 13, 2373–2385, 2009;
- P. Wolski et,al., 2005: Dynamics of floodplain-island groundwater flow in the Okavango Delta, Botswana; Journal of Hydrology 320 (2006) 283–301;
- 1. Joel Kotkin,2013: http://www.forbes.com/sites/joelkotkin/2013/04/16/megacities-and-the-density-delusion;
- 2. Taylor et al., 2013: Ground water and climate change, Ground Water and Climate Change; Nature Climate Change 3, 322– 329 (2013) doi:10.1038/nclimate1744;
- 3. Sarmin Sultana et al., 2009: Hydrogeochemistry of The Lower Dupi Tila Aquifer In Dhaka City, Bangladesh;
- 4. IPCC 2007: IPCC Fourth Assessment Report: Climate Change 2007: http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch10s10-2-4-3.html;
- 5. http://www.globalsecurity.org/military/world/bangladesh/maps.htm
- 6. http://abidazad.wordpress.com/my-articles/the-invisible-water-alarm/
- 7. McBean et al., 2011: Groundwater in Bangladesh: Implications in a Climate-Changing World, Water Research and Management, Vol. 1, No. 3 (2011) 3-8;
- 9. Hoque et al., 2007: Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification; Hydrogeology Journal (2007) 15: 1523–1534;
- 10. Ahmed KM, Hasan MK, Burgess WG, Dottridge J, Ravenscroft P, van Wonderen JJ (1999) The Dupi Tila aquifer of Dhaka, Bangladesh: hydraulic and hydrochemical response to intensive exploitation. In: Chilton PJ (ed) Groundwater in the urban environment: selected city profiles. Balkema, Rotterdam, pp 19–30;
- 11. Mahmud etal. 2011: Remote Sensing & GIS Based Spatio-Temporal Change Analysis of Wetland in Dhaka City, Bangladesh; Journal of Water Resource and Protection, Vol. 3 No. 11 (2011), Article ID: 8678;
- 12. M Owor et al. 2009: Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin; ENVIRONMENTAL RESEARCH LETTERS, Environ. Res. Lett. 4 (2009) 035009 (6pp).
- 13. Bovolo et al. 2009: Groundwater resources, climate and vulnerability; Editorial, Environ. Res. Lett. 4 (2009) 035001;

REFERENCES

- 14. Howard G, Bartram JK, Luyima PG. Small water supplies in urban areas of developing countries. In: Cotruvo JA, Craun GF, Hearne N, editors. Providing safe drinking water in small system: technology, operations, and economics; 1999. p. 83–93. Lewis Publishers, Washington, DC, USA.
- 15. A. Gupta et. Al., 1997: Geomorphology and the urban tropics: building an interface between research and usage; Geomorphology 31 1999. 133–149;
- 16. So Kazama et al., 2007: Evaluation of groundwater resources in wide inundation areas of the Mekong River basin; Journal of Hydrology (2007) 340, 233–243;
- 17. P. Doll et al., 2008: Global-scale modeling of groundwater recharge; Hydrol. Earth Syst. Sci., 12, 863–885, 2008;

